
U N I V E R S I T Y OF S Ã O P A U L O

School of Arts, Sciences and Humanities

Technical Report PPgSI-001/2013
Proof of Correctness of the Bitwise Algorithm for

Intra-procedural Data-flow Testing Coverage

Marcos Lordello Chaim
Roberto Paulo Andrioli de Araujo

January - 2013

The contents of this report are the sole responsibility of the authors.

Technical Report Series

PPgSI-EACH-USP. Arlindo Béttio St. 1000 - Ermelino Matarazzo -
03828-000.

São Paulo, SP. Brazil.
TEL: 55 (11) 3091-8197 http://www.each.usp.br/ppgsi



Proof of Correctness of the Bitwise Algorithm for
Intra-procedural Data-flow Testing Coverage
Marcos Lordello Chaim1, Roberto Paulo Andrioli de Araujo1

1Software Analysis and Experimentation Group (SAEG)
School of Arts, Sciences and Humanities

University of São Paulo
São Paulo – SP, Brazil

{chaim,roberto.araujo}@usp.br

Abstract. Intra-procedural data flow testing coverage data can be very expensive to
collect, especially for long running programs tracking the assignment of a value to a
variable and its subsequent use,i.e., a definition-use association (dua). Recently, a novel
algorithm, called Bitwise Algorithm (BA), which utilizes efficient bitwise operations and
inexpensive data structures to track intra-procedural duas, has been proposed. BA’s
RAM memory requirements are restricted to three bit vectors the size of the number
of duas. In terms of time complexity, its performance is at least as good as the most
efficient previous algorithms and can be up to 100% more efficient. We present BA’s
proof of correctness showing that it correctly determines the duas covered during the
program execution.

1. Introduction
Data-flow (DF) testing provides comprehensive structural testing. It involves the de-

velopment of tests which exercise every value assigned to a variable and its subsequent
references (uses) occurring either in a computation or in a predicate. These entities are
called definition-use associations (duas) [Rapps and Weyuker 1985]. Nevertheless, more
than thirty years after its introduction, DF testing is hardly used in industrial settings. This
situation occurs because DF testing tends to demand that many entities be verified. As a
result, much effort is required to create test sets and to track duas at run-time.

To reduce the overhead due to tracking duas at run-time, we have proposed the bitwise
algorithm (BA) for intra-procedural data-flow testing coverage [Chaim and de Araujo
2013]. BA utilizes efficient bitwise operations and inexpensive data structures to track
intra-procedural duas. RAM memory requirements are restricted to three bit vectors the
size of the number of duas. Conservative simulations indicate that the new algorithm
imposes less execution slowdown.

More details on the description of the algorithm and the analyses and simulations car-
ried out can be found in [Chaim and de Araujo 2013]. In what follows, we present the
BA’s proof of correctness showing that it determines correctly the duas coverage during
the execution of a test case. The rest of this document is organized as follows. In Sec-
tion 2, we briefly present the concepts utilized to model a program and the definition of
DF testing entities. The bitwise algoritm (BA) is described in Section 3. In Section 4, the
proof is presented. We draw our conclusions in Section 5.

2. Background
Let P be a program mapped into a flow graph G(N,E, s, e) where N is the set of

blocks of statements (nodes) such that once the first statement is executed all statements



are executed in sequence, s is the start node, e is the exit node, and E is the set of edges
(n′,n), such that n′ 6= n, which represents a possible transfer of control between node n′

and node n. A path is a sequence of nodes (ni, . . ., nk, nk+1, . . ., nj), where i ≤ k < j,
such that (nk, nk+1) ∈ E.

Data-flow testing requires that selected test cases exercise paths in a program between
every point a value is assigned to a variable and its subsequent references. When a variable
receives a new value, it is said that a definition has occurred; a use of a variable happens
when its value is referred to. A distinction is made between a variable referred to compute
a value and to compute a predicate. When referred to in a predicate computation, it is
called a p-use and is associated with edges; otherwise it is called a c-use when associated
with nodes. A definition-clear path with respect to (wrt) a variable X is a path where X
is not redefined in any node in the path, except possibly in the first and last ones.

Data-flow testing criteria in general require that definition-use associations (duas) be
covered. The triple D = (d, u, X), called c-use dua, represents a data-flow testing require-
ment involving a definition in node d and a c-use in node u of variable X such that there
is a definition-clear path wrt X from d to u. Likewise, the triple D = (d, (u′, u), X), called
p-use dua, represents the association between a definition and a p-use of a variable X . In
this case, a definition-clear path (d,. . .,u′,u) wrt X should exist.

The all uses data-flow testing criterion [Rapps and Weyuker 1985] requires the set of
paths executed by the test cases of a test set T to include a definition-clear path for each
dua (d, u, X) or (d, (u′, u), X) of a program P . A test set with such a property is said to
be adequate to the all uses criterion for program P since all required duas were covered.

3. Bitwise dua coverage algorithm

The bitwise algorithm (BA) for dua coverage is based on sets associated with each
node of the flow graph. Below we formally define the sets of born (Born(n)), disabled
(Disabled(n)), potentially covered (PotCovered(n)) and sleepy (Sleepy(n)) duas for a
node n ∈ N of a flow graph G(N,E, s, e):

Born(n) : set of duas (d,u, X) or (d,(u′,u), X) such that d = n.

Disabled(n) : set of duas (d,u, X) or (d,(u′,u), X) such that X is defined in n and d 6= n.

PotCovered(n) : set of duas (d,u, X) or (d,(u′,u), X) so that u = n.

Sleepy(n) : set of duas (d,(u′,u), X) such that u′ 6= n.

To determine the covered duas, BA keeps track of three working sets—the alive duas
(Alive), the current sleepy duas (CurSleepy) and the covered duas (Covered). How these
extra sets are determined is described in Algorithm 1.



Input: nodes traversed during program execution; sets Disabled(n), Sleepy(n),
PotCovered(n), and Born(n)

Output: Covered set
Alive = ∅;1

CurSleepy = ∅;2

Covered = ∅;3

repeat4

n = node traversed in program execution;5

Covered = Covered
⋃

[[Alive - CurSleepy]
⋂

PotCovered(n)];6

Alive = [Alive - Disabled(n)]
⋃

Born(n);7

CurSleepy = Sleepy(n);8

until program execution finishes ;9

return Covered10

Algorithm 1: Bitwise dua coverage algorithm.

4. Correctness proof of the bitwise algorithm

Theorem 1. Algorithm 1 is correct, that is, the Covered set contains the duas exercised
in path s . . . l where s is the start node and l is the last node traversed in a program
execution.

Proof. We prove the correctness of Algorithm 1 by induction.

Basis. The base case consists of determining the values of Covered, Alive, and
CurSleepy for a path with a single node traversed and equal to s, the start node. For
such a path, Covered is empty because duas (d,s,X) or (d,(u′,s),X) do not exist. Alive
contains duas (s,u,X) and (s,(u′,u),X) which are birthed in s and CurSleepy comprises
all p-use duas, except the p-use duas (s,(s,u),X).

Basis proof. After line 6, Covered is empty because the result of Alive minus Cur-
Sleepy is intersected with PotCovered(s) whose value is empty because there is not a
dua with a use in s. Alive is set up with duas (s,u,X) and (s,(u′,u),X) after line 7 since
its initial empty value is added to Born(s), which contains duas (s,u,X) and (s,(u′,u),X).
CurSleepy will receive the Sleepy(s), determined according to the definition of Sleepy(n)
in Section 3, after line 8. Thus, the basis is proved.

Induction. Assuming that Covered contains the exercised duas and Alive the alive
duas in path (s . . . nk) and CurSleepy contains the value of Sleepy(nk), then, after node
nk+1 is processed in Algorithm 1, Covered will contain the exercised duas and Alive the
alive duas in path (s . . . nk, nk+1) and CurSleepy will contain the value of Sleepy(nk+1) .

Induction proof. Firstly, we show that Covered is correct after nk+1 is processed
regarding only c-use duas. Following the inductive step, Covered and Alive are correct
in path (s, . . . , nk). At line 6 of Algorithm 1, the new Covered will contain the previous
Covered added with the intersection of Alive and PotCovered(nk+1), which contains
c-use duas (d,nk+1,X), according to the definition in Section 3. CurSleepy does not
influence the result of Covered regarding c-use duas since it contains just p-use duas.
Hence, Covered will contain the covered c-use duas up to nk plus c-use duas (d,nk+1,X)



that are present both in Alive and PotCovered(nk+1); that is, those c-use duas that are
covered when path (s, . . .,nk, nk+1) is traversed.

The rationale with respect to p-use duas is similar. At line 6, CurSleepy is subtracted
from Alive. However, CurSleepy is equal to Sleepy(nk) before nk+1 is processed due
to the inductive step. This implies CurSleepy contains all duas (d, (u′,u), X) such that
u′ 6= nk, following the definition of Sleepy(n) in Section 3. In other words, only p-
use duas (d,(nk,u), X) are not in CurSleepy before nk+1 is processed. Thus, (d,(nk,u),
X) are the only p-use duas left after the subtraction of CurSleepy from Alive. P-use
duas (d,(nk,u), X) are then intersected with PotCovered(nk+1), which contains p-use
duas (d,(u′,nk+1),X) (see definition in Section 3). As a result, Covered will contain the
covered p-use duas up to nk plus p-use duas (d,(nk,nk+1),X) that are present both in Alive
and in PotCovered(nk+1); that is, those p-use duas that are covered when path (s, . . .,nk,
nk+1) is traversed.

To complete the induction proof, however, it needs to be shown that Alive and Cur-
Sleepy are correct after nk+1 is processed. Considering the Alive working set, its value
is correct up to nk before executing line 7 of the algorithm. At line 7, duas (d,u, X)
or (d,(u′,u), X), such that X is defined in nk+1 and d 6= nk+1, are eliminated from
Alive because they belong to Disabled(nk+1)—see definition of Disabled(n) in Section 3.
This subtraction operation represents the redefinition of variable X at nk+1. The subse-
quent union with Born(nk+1) which contains duas (nk+1,u,X) and (nk+1,(u′,u),X), adds
to Alive those duas created from the definition of X at nk+1. Thus, after line 7, Alive
contains the duas alive in path (s, . . .,nk, nk+1). At line 8, CurSleepy receives the value
of Sleepy(nk+1). Hence, the induction is proved.

After nk+1 = l is processed, Covered will contain the set of duas exercised in path
(s . . . l), which proves Theorem 1.

5. Conclusions
The proof of correctness of the bitwise algoritm (BA) shows that it correctly deter-

mines the definition use associations covered during the execution of a program. The
algorithm is correct even when the program execution terminates without traversing the
exit node e. For example, if there is an abort command in a node n such that n 6= e, the
program will terminate its execution at n, before reaching the exit node. Nonetheless, the
proof of correctness presented shows that BA correctly determines the covered duas.

References
Chaim, M. L. and de Araujo, R. P. A. (2013). An efficient bitwise algorithm for intra-

procedural data-flow testing coverage. Information Processing Letters. To appear.

Rapps, S. and Weyuker, E. J. (1985). Selecting software test data using data flow infor-
mation. IEEE Transactions on Software Engineering, SE-11(4):367–375.


