
U N I V E R S I T Y OF S Ã O P A U L O

School of Arts, Sciences and Humanities

Technical Report PPgSI-001/2022
ResDialTools – A Toolset for Text Annotation

Caio T. Cruz, Matheus R. A. Veneziani,
Norton T. Roman, Alexandre R. Alvares

Tiago E. I. Missão, Daniel V. da Silva

March - 2022

The contents of this report are the sole responsibility of the authors.

Technical Report Series

PPgSI-EACH-USP
Arlindo Béttio St. 1000 - Ermelino Matarazzo - 03828-000.

São Paulo, SP. Brazil.
TEL: 55 (11) 3091-8197 http://www.each.usp.br/ppgsi



ResDialTools – A Toolset for Text Annotation

Caio T. Cruz1 , Matheus R. A. Veneziani1 , Norton T. Roman1

Alexandre R. Alvares1 , Tiago E. I. Missão1 , Daniel V. da Silva1

1Escola de Artes, Ciências e Humanidades – Universidade de São Paulo
São Paulo – SP, Brazil

Abstract. This article describes a toolset designed for general-purpose text annota-
tion tasks. The toolset comprises a pipeline of three independent but interconnected
tools, covering all steps throughout the annotation process, from data segmentation to
data annotation to annotation evaluation. These tools were primarily built to address
three main issues found in current general-purpose annotation tools: (i) the potential
confounding of variables, as a result of having annotators do both segmentation and
annotation in a single step; (ii) the cognitive load imposed to annotators; and (iii) the
difficulty in comparing one study to others when different agreement indexes are re-
ported.
Within this toolset, these issues are dealt with by (i) having different tools perform data
segmentation and annotation separately; (ii) giving researchers a tool where they can
define and generate ad hoc tools, tailored to specific annotation schemes, to be dis-
tributed amongst annotators; and (iii) furnishing a way to calculate inter-annotator
agreement according to six different indexes. Given its modularity, the toolset can be
used both as a pipeline, whereby the output of one tool can be input to the next one, and
for specific subtasks. It then lends itself, among other things, to the quick prototyping
and testing of annotation schemes, to the execution of full annotation experiments and
efforts, and to the study of how different agreement indexes behave on the same data.

1. Introduction

Within the field of Computational Linguistics, corpora have been historically used for
a variety of tasks, from the construction of tutoring systems (e.g., Callaway et al. [2005])
to automatic summarisation (e.g., Radev et al. [2004], Hasler [2007], de Loupy et al.
[2010], Atkinson and Munoz [2013]), also serving as the basis for the observation and
proposal of hypotheses, along with their optimisation and assessment [Mitkov et al. 1999],
or even for the modelling of linguistic phenomena through the use of machine learning
techniques [Pustejovsky and Stubbs 2012]. Whatever the end, the decision about relying
on some corpus to produce results comes at the price that, in order to make them useful,
they usually must receive some sort of pre-processing, in the form of meta-data holding
information about the phenomenon of interest, i.e. they must be annotated [Pustejovsky
and Stubbs 2012].

Annotating a corpus, however, is no simple task, specially if the procedure is to be
carried out by humans. The problem, in this case, is that annotators usually produce dif-
ferent results when compared to each other, given that this task is, in fact, an interpretation
process by its executors [Grouin et al. 2011]. These differences are usually accounted for
through the use of some inter-annotator agreement measure, that is a measure of the ex-
tent to which different people assign the same label to the same portion of the annotated
material, thereby determining the consistency of the annotation across annotators [Grouin
et al. 2011].



In fact, high levels of inter-annotator agreement are very much welcome in any an-
notation effort, since the higher the number of people agreeing in their classification, the
higher our confidence in data quality [Craggs and Wood 2005, Bayerl and Paul 2011,
Grouin et al. 2011]. Moreover, high agreement scores also allow us to infer that anno-
tators clearly understood the annotation scheme they used [Artstein and Poesio 2008],
thereby increasing our confidence in the appropriateness of the annotation scheme itself.
This agreement, when taken as a measure of our confidence in the quality of both an-
notated data and annotation scheme, becomes a necessary condition for assessing any
scheme’s validity [Artstein and Poesio 2008].

There are nevertheless some hurdles in the path to high agreement scores. Apart from
the natural subjectivity of the task at hand, which in an on itself constitutes a source of
disagreement (e.g. Gut and Bayerl [2004], Alm et al. [2005]), some experimental choices
may actually pose further threats to this measure. One such choice is, for example, allow-
ing for a confusion of variables, whereby disagreement cannot be associated to a single
experimental condition. This confusion might come up as a result of having the same set
of annotators define the basic unit of annotation along with its label (e.g. [Stenetorp et al.
2012, Pérez-Pérez et al. 2015]), or of allowing them to modify specific units (e.g. [Lenzi
et al. 2012]). Even though there are situations that cannot be helped, when analysing the
data researchers would not be able to determine which combination of basic unit defini-
tion, annotation and annotator was responsible for the observed results, making it harder
to redesign the procedure should something go wrong.

Another important aspect of designing an annotation experiment is the cognitive load
imposed to annotators. In that sense, one should limit difficulties as much as possible to
those naturally found in the data interpretation task, since the reliability of the annotated
material has been found to correlate with the complexity of the annotation process (cf. Gut
and Bayerl [2004]). Within this setup, the use of annotation tools may be of great value,
providing a speed-up to one of the most time-consuming and financially costly parts of the
research [Stenetorp et al. 2012]. Such tools, however, should not increase the annotation
burden, by demanding annotators to learn their idiosyncrasies. They should, then, be
simple to learn and provide intuitive and user-friendly interfaces, so as to allow for less
specialised non-technical annotators, such as domain experts, to use them [Orăsan 2003,
Stenetorp et al. 2012, Bontcheva et al. 2013].

Once data are annotated yet another difficulty arises, which lies in the heart of ap-
plying inter-annotator agreement measures. The problem in this case is that, despite the
importance of measuring agreement, there is no single standard way of calculating it.
This lack of a proper measure, in turn, opens room for the use of a number of methods,
ranging from the plain reckoning of the proportion of annotations upon which annota-
tors agree (e.g. Petasis [2012]), to more elaborated coefficients, such as Krippendorff’s
α [Krippendorff 2004] and Cohen’s κ [Cohen 1960]. As for this last one, κ has been at
some point announced as the de facto standard coefficient for Computational Linguistics
(cf. [Carletta 1996]), only to be debunked later on, due to its undesirable behaviour with
some data distributions (cf. Eugenio and Glass [2004], Artstein and Poesio [2008]), and
so leading us back to the starting point.

This uncertainty about how to measure inter-annotator agreement has already raised
a debate about how appropriate current indexes are (e.g. Geertzen and Bunt [2006], Art-



stein and Poesio [2008], Bayerl and Paul [2011]), with experiments being carried out on
a number of different proposals (e.g. Grouin et al. [2011], Mathet et al. [2012], Fort et al.
[2012]). However important as a debate, the current situation leaves Computational Lin-
guistics experimenters with no other choice but to stick to the method they believe to better
suit their needs. As such, different researchers report their results using different indexes,
sometimes making their comparison across independent studies virtually impossible.

An indicative of this problem’s magnitude can be found in a literature review com-
prising publications on prosodic and phonetic transcriptions, along with word-sense dis-
ambiguation [Bayerl and Paul 2011], where it was found a total of 972 agreement indexes
reported in 326 studies, leading to a mean value of almost three different indexes per study.
As it seems, researchers in Computational Linguistics have already adopted the strategy
of reporting multiple agreement indexes in their publications (e.g. Petasis [2012], Fort
et al. [2012]), a choice that comes at the price of having to calculate agreement according
to each of the reported indexes.

To help them in this task, some annotation tools already come with a set of prepro-
grammed indexes (e.g. Apostolova et al. [2010], Verhagen [2010], Petasis [2012]). Still,
it might be the case that (i) researchers are not capable of adapting the annotation tool to
their needs; or (ii) the desired agreement measure is not implemented in the tool at hand,
since most of the existing tools seem to provide no more than two indexes (e.g. Müller
and Strube [2006], Petasis [2012], Bontcheva et al. [2013]), thereby reducing the odds
that one’s research can be compared to others’.

In this article, we describe a toolkit comprising three independent but interconnected
tools designed to approach each of the above mentioned issues separately, but also al-
lowing for the final integration of their results, and so filling all the steps throughout the
annotation process, from data segmentation to data annotation to annotation evaluation.
As one of its main features, the toolkit allows for the independent execution of each of
these stages, with the integration of partial results so as to form an overall output. Even
though beta versions of each tool have already been presented to the public (mostly in
Portuguese), here we introduce their stable versions, with more features added and having
undergone a set of usability tests, which resulted in their (sometimes deep) modification,
in order to reduce further the so desired low cognitive burden imposed both to researchers
and annotators.

Modifications made to the toolset include (but are not limited to): the addition of
new agreement coefficients, going from four to six; the modification of the Graphical
User Interface of some tools; the possibility of carrying out projects both in Portuguese
and English (originally the toolset was available in Portuguese only); and the standard-
isation of their internal codification (originally, the data codification scheme output by
the segmentation tool differed from the standards required by the remaining tools). All
tools are currently distributed under GPL1, being available for download at https:
//github.com/NortonTR/ResDialTools. We hope the community will find
them useful.

The rest of this article is organised as follows. Section 2 gives an overview to the
toolset, along with some implementation and testing details. Next, in Section 3, we

1GNU General Public License: www.gnu.org/licenses/gpl-3.0.html



present the results of the usability tests undergone by each tool in the toolset. In this
section, we also present a detailed description of each tool, as a result of the correction of
the usability problems, also describing all incorporated features since their beta versions.
Section 4, in turn, compares our system to some other existing annotation tools, pointing
out the main differences between these projects and ours. These differences are further
discussed in Section 5, where we try to determine when they can be taken as advantages
and in which situations they would not be desirable features. Finally, in Section 6 we
present a conclusion to this work, along with directions for future improvement.

2. Toolset Overview
Figure 1 illustrates a typical workflow within our toolset. It is worth observing, how-

ever, that even though the toolset was originally designed to work as a pipeline, each of its
stages can be run separately, provided that input files are coded following the standards de-
fined by Roman [2013]. In this figure, the process begins with a corpus of “raw” texts, that
is texts with no other information added. These texts are then input to TSeg [Rodrigues
et al. 2012], where users can segment them in spans (either automatically, manually, or
a combination of both), so as to produce the basic units for annotation. The resulting
segmentation may then be inspected by the researcher, modifications can be made and,
if necessary, the process can be started over. This is a specially useful feature in case of
manual annotations, where researchers might wish to determine if segmentation instruc-
tions were well understood by annotators [Pérez-Pérez et al. 2015] before going deeper
in the process. For this reason, and similar to Verhagen [2010], only one segmentation
scheme is allowed throughout the entire annotation process.

Figure 1. Typical workflow within our toolset.

Once a segmentation is settled, researchers can define an annotation scheme, with
categories, values and labels, and use MetaAnn [Missão and Roman 2013] to codify it
through its Graphical User Interface. Upon finishing with this codification, they can have
MetaAnn build the source code (along with its compiled counterpart) for the annotation
tool to be distributed to annotators. The distributed tool will then take as input the seg-
mented corpus (output by TSeg), and add any annotation made by its user. In doing so,



MetaAnn provides researchers with a graphical interface for the creation of ad-hoc anno-
tation tools, allowing them to codify their annotation schemes. Throughout this process,
and as recommended by Orăsan [2003], MetaAnn not only hides the details of the anno-
tation scheme away from annotators, but also reduces their cognitive load, by building an
annotation tool with a simpler interface, and so having annotators focus on the annotation
task itself.

This tool can then be distributed to a small number of annotators for testing purposes.
Annotated corpora, output by the tool, can be collected and input to AgreeCalc [Alvares
and Roman 2013], which presents researchers with a set of six different coefficients of
agreement they can apply to the dataset. Besides furnishing this range of possible indexes,
AgreeCalc also allows for their application to different subsets of annotation units and
annotators, thereby allowing for a more in-depth analysis of the results (cf. Gut and Bayerl
[2004]), generating reports in HTML, XML and PDF. These reports, in turn, contain
not only the overall agreement result of the indicated dataset, but also an analysis of
the agreement calculated amongst all possible pairs of annotators, so as to allow for the
identification of any deviant behaviour, along with an agreement range (from the lowest
to the highest agreement pair).

If agreement turns out to be low in this tentative set, researchers can look at these
reports, verifying differences between pairs of annotators. With these results at hand, they
can make modifications to the annotation scheme and annotation guidelines, rerunning
MetaAnn and so starting the annotation process (or even the entire process, beginning with
segmentation) over, until they come up with a more reliable scheme. This final scheme
(in fact, the annotation program that applies it to the corpus) can then be distributed to
a larger amount of annotators. At the end of the annotation period, annotators may send
their results (i.e. the files output by MetaAnn’s generated tool) back to the researchers.
These files correspond to the original (segmented) corpus with annotations added to it in
a stand-off manner (e.g. [Mueller and Strube 2001, Lenzi et al. 2012, Bontcheva et al.
2013, Pérez-Pérez et al. 2015, Janssen 2016]).

With all annotations at hand, final agreement figures can be calculated and, if they turn
out to reach some acceptable amount, researchers can use AgreeCalc to build gold stan-
dards for training and/or testing their future models. As illustrated, our toolset provides a
way to separate the tasks within the annotation effort, thereby hiding task-specific details
away from the remaining annotation steps, and making them simpler and easier to be car-
ried out, also allowing for probing tests to be made alongside the process. Additionally,
the toolset also complies with some commonly found principles of design (cf. Mueller and
Strube [2001], Müller and Strube [2003], Müller and Strube [2006], Geertzen and Bunt
[2006]), such as the use of XML to store its data (which forms the base of its codification
scheme, presented in Roman [2013]) and the use of stand-off annotation.

Finally, the fact that the toolset was implemented in Java makes it platform indepen-
dent, as advised in Mueller and Strube [2001]. This is a desirable feature, given the
freedom it gives to researchers. But beyond, since the tool generated by MetaAnn is also
written in Java, so is this tool platform independent, thereby increasing the amount of
potential annotators capable of using it. As an additional feature to help make the toolset
available to a broader public, all texts it manipulates can be codified using UTF-8, making
it suitable to any supported language (cf. Day et al. [2004], Lenzi et al. [2012], Stenetorp



et al. [2012]). In what follows, the usability tests undergone by our toolset will be de-
scribed in more detail whereas each tool, along with the changes we made from their beta
versions to the current ones, are described in Section 3.

2.1. Testing Usability
As a way to verify the above claimed simplicity and ease of use, each tool in our

toolset undertook a couple of usability tests, which gave birth to the versions we present
here. Amongst the available techniques to test usability, in this work we focused on
Heuristic Evaluation, which involves having evaluators examine the interface in light
of recognised usability principles – the heuristics [Nielsen 1993], and Cognitive Walk-
through, where the investigator “walks through” the interface in the context of the tasks a
typical user would try to accomplish, comparing the actions and feedback by the interface
to this user’s assumed goals and knowledge [Jeffries et al. 1991, Jordan 1998].

The tests started with the definition of test scenarios, i.e. tasks the user must execute
within the system2 (cf. Dumas and Redish [1999]), built from a (depth) search through
each tool’s user manual. Since AgreeCalc had no user manual up to this point, scenarios
for this tool were constructed from an analysis of its description in Alvares and Roman
[2013] instead. In all tests, users were supposed to be experienced in the computational
platform at had, that is to say they were assumed to be familiar with navigating through
the basic functions of graphical interfaces (such as closing, opening, minimising or max-
imising windows) and the use of the mouse (or any other pointing device) and its buttons.

During the Cognitive Walkthrough, each scenario was examined bearing in mind four
key points [Lewis and Wharton 1997]: (i) will the users perform the right action for the
desired effect?; (ii) will they perceive the right action is available?; (iii) will they asso-
ciate the right action with the desired effect?; and (iv) if the correct action is executed,
will they perceive progress was made towards the desired effect? Answers are then doc-
umented in a Walkthrough Form, and a negative answer to any of these questions will
deem the interface to have failed with this respect, and so point out a usability problem to
be addressed.

For Heuristic Evaluation, we relied on the heuristics proposed by Nielsen [1994],
which cover ten key aspects with which interfaces should comply, from aesthetic to error
prevention to documentation issues3. Analysed scenarios were the same as those used
during Cognitive Walkthrough. Each scenario was then assessed according to the whole
set of heuristics, with results documented in an Evaluation Form. Once again, should
any scenario fail with respect to any of these heuristics, the interface will be regarded as
having a usability problem. Interestingly, various problems found by Heuristic Evaluation
were not found by Cognitive Walkthrough and vice-versa, indicating that both techniques
can be used as a complement to each other.

Scenarios resulting in usability problems (i.e. those failing in any of the usability tests)
were tabled and sorted according to the severity of the reported problem. In this work,
we ranked problems according to the scale presented by Nielsen [1993, p. 103], which
classifies them as irrelevant (not a problem at all), cosmetic (fixed only if time allows it),
minor (low priority), major (high priority) and catastrophic (imperative fixing). Problems

2Not to be confused with scenarios for software testing.
3For a complete list we refer the interested user to [Nielsen 1994].



were then addressed following a descending order of severity. Even though our initial
goal was to solve only problems from catastrophic to minor, we managed to solve them
all, with a single exception, regarding a proper system icon for the toolset.

In what follows, more details on the discovered usability problems will be presented,
along with a description of each tool’s current form and functionalities. Differences be-
tween current versions and previous (beta) ones will also be pointed out, so as to allow
for a better comparison between them.

3. Results

During Heuristic Evaluation, TSeg failed in 14 of the 18 tested scenarios (78%),
MetaAnn failed in 16 of 22 (73%), its generated tool in 11 of 13 (85%), and AgreeCalc
failed in 39 of 41 scenarios (95%). Even though resulting in relatively fewer failures,
Cognitive Walkthrough still pointed out 10 failed scenarios in TSeg (out of 18 – 56%),
of which nine were also found by Heuristic Evaluation; seven (out of 22 – 32%) for
MetaAnn, of which six were also determined by Heuristic Evaluation; six (of 13 – 46%)
for MetaAnn’s generated tool, all of them also found during Heuristic Evaluation; and
18 (of 41 – 44%) for AgreeCalc, of which 17 were also highlighted during Heuristic
Evaluation. Tables 1 and 2 summarise these results.

Table 1. Scenario results for Cognitive Walkthrough and Heuristic Evaluation.

Cognitive Walkthrough Heuristic Evaluation
Tool Tested Success Failure Success Failure
TSeg 18 8 10 4 14

MetaAnn 22 15 7 6 16
MetaAnn’s tool 13 7 6 2 11

AgreeCalc 41 23 18 2 39

Table 2. Failed scenarios for Cognitive Walkthrough (CW) and Heuristic Evalua-
tion (HE).

TSeg MetaAnn MetaAnn’s Tool AgreeCalc
Failed in both 9 6 6 17

Failed only in CW 1 1 0 1
Failed only in HE 5 10 5 22

Failed in none 3 5 2 1
Total 18 22 13 41

In these tables, its interesting to notice that, despite Heuristic Evaluation having re-
sulted in the higher amount of identified usability problems, other failures were only
identified during Cognitive Walkthrough, indicating the complementarity of both meth-
ods. Also, it is noticeable the comparatively small amount of scenarios that succeeded in
both tests. This is yet another indicative of the relevance of testing usability in such tools,
given their natural complexity and importance to Computational Linguistics. As it will be
discussed further in this article, this is not mainstream behaviour in the field.



Perhaps inevitably, during the usability tests some functional problems (i.e. behaviour
that was not in accordance to the tool’s description in its user manual) were also uncov-
ered, along with some places for improvement. As a result, two additional fixes were
executed in TSeg, 12 in MetaAnn, five in its generated tool, and five in AgreeCalc. These
changes, together with the usability corrections made, constitute real improvements to
each tool’s previous version, so as to make these tools more suitable for usage by the
community. In what follows, we will describe our toolset in more detail, pointing out the
main changes made to it.

3.1. TSeg

TSeg was primarily built to break text inputs into basic units of annotation (akin
to Mueller and Strube [2001]’s markables and what Lenzi et al. [2012] calls Minimum
Markable Unit), either automatically (e.g. by splitting the text into words, sentences and
paragraphs) or through its manual segmentation into units of arbitrary length. In doing so,
TSeg also aims at complementing the various existing tools (e.g. [Müller and Strube 2006,
Lohr et al. 2019]) which need previously segmented texts to work. Since its introduction
to the community in 2012 [Rodrigues et al. 2012], TSeg was internationalised4 and im-
proved, resulting in its first stable version. This version was then assessed according to its
usability, thereby leading to its current version, as described here.

Written in Java, TSeg can be run in all computing platforms and architectures support-
ing the Java Virtual Machine (JVM) in its 7.0 version or higher, with the Java Runtime
Environment (JRE) installed. As an additional feature, TSeg was built as a stand-alone
application, thereby having no need for a network connection. This, in turn, makes its
use convenient by annotators who do not wish to worry about such technical details as
network signal, delays and the like. Nevertheless, TSeg presents the inconvenience of de-
manding its users to somehow send the annotated data (i.e. the files edited through TSeg)
back to researchers. This is a trade-off that we are afraid cannot be helped, even though
we still believe it pays off to leave annotators’ minds out of the aforementioned issues.

3.1.1. Data Modelling: Representing Annotations

Besides the usability corrections and its translation to English, another improvement
to TSeg took place in its representation language. In this sense, despite the efforts in the
search for a linguistic codification standard (e.g. Przepiórkowski and Bański [2009], Ver-
hagen [2010]), no single coding scheme has so far emerged as the de facto representation
language for the annotation of written corpora. There is, however, some understand-
ing that, amongst other things, this format should preferably be compatible with XML,
thereby making it platform independent [Müller and Strube 2006, O’Donnell 2008], and
allow for new annotations to be added independently, that is there is a preference for
stand-off annotation (e.g. Müller and Strube [2006], O’Donnell [2008], Verhagen [2010]).

Originally implementing an annotation format of its own, TSeg was modified so as
to work with the XML-like language described in Roman [2013]. Its data model cor-
responds then to a set of plain text files tagged so as to represent the segmentation de-
fined by its user. Each segmented file begins with a <document> tag, with a corre-

4Currently, it presents an interface in Portuguese and English



sponding </document> at the end of the file. Segments are enclosed within <UNIT>
and </UNIT> tags (akin to the <word> and </word> tags used in Müller and Strube
[2006]), as illustrated in Figure 2, with each UNIT holding an identification number, so
it can be connected to other units (be them in the same file or in other files) in a stand-off
manner.

Figure 2. XML-like coding in TSeg.

In Figure 2, one can see that some units are embedded into others (e.g. unit1 is fully
embedded into unit0, and unit3 is partially embedded into unit2). This is the only feature
that takes our coding scheme apart from a pure XML codification, which does not allow
for such embeddings. Even though we could have achieved the same effect by adding an
extra stand-off layer to the model, we though it would unnecessarily add complexity to the
coding scheme. Along with their identification number, some units also carry the “IND”
label. This is a special mark used to flag that these units, although embedded into others,
are independent of their hosting unit. “IND” should be used when some text spam builds
up a segment which bears no relation to the larger segment that contains it, such as when
parentheses are added to some text, for example. They represent then discontinuities (or
interruptions) in the regular flow of the text, and must be interpreted according to the
phenomenon under study.

Through this procedure, our model covers all segmentation properties pointed out
by Reidsma et al. [2005], to wit:

• Superposition: TSeg allows for overlapped segments, in which two or more seg-
ments share the same text span. In this sense, embedded segments are but seg-
ments in which one fully superposes the other;

• Interleaving: occurs when spans belonging to two or more independent segments
are partially ordered in an interleaved way. In TSeg, interleaving can be codified
by giving the same identification to multiple (sub-)segments;

• Discontinuities: discontinuous segments can be determined either through the def-
inition of a segment and posterior definition of an embedded segment within it



(thereby removing part of the text in the hosting segment), or through the defini-
tion of separated segments with the same identification;

• Multiple Annotations: by forcing each segment to have a unique identification
in the corpus, TSeg allows for their annotation with more than one element in a
stand-off fashion. Multiple annotations can then be assigned to the same segment
through this identification;

• Input Coverage: the segmentation may or may not cover all of TSeg’s input,
thereby allowing for some text spans to be left out; and

• Segment Size: segments may vary in size, ranging from words to arbitrary text
spans.

3.1.2. Functionalities and Improvements

As soon as the input (raw) text is loaded into TSeg, it is automatically annotated
with some default metadata tags, such as identifiers for the document, annotation scheme,
source-text, source corpus and annotator. The user can then edit the document, selecting
the desired text span, clicking on it and then choosing the appropriate action (Figure 3).
Once defined some units, the user can also remove them, as shown in this figure5. As an
alternative to visualising XML tags, the user can opt for a representation where segments
are assigned colours. Both views are illustrated in Figure 4.

Figure 3. Defining an annotation unit.

Within TSeg, the user can also choose to automatically segment the input text into
words, sentences or paragraphs. Sentences are taken to be text spans limited by full stop,
exclamation or question marks. Paragraphs, in turn, are collections of sentences ending
in a new-line character. Finally, besides segmenting the text, TSeg also gives some basic
statistics about it, such as the total amount of segments (i.e. words, sentences, paragraphs
or user defined units), along with the amount of overlapped units. This information can
then be used by the researcher to better understand the properties of the corpus at hand.

5Even though, in the figure this option is disabled, since no unit has been defined.



Figure 4. Possible views of TSeg’s segmentation.

Since its beta version [Rodrigues et al. 2012], TSeg has undergone some major modi-
fications. These were:

• The changing of its coding format, as described in Section 3.1.1;
• The double view of the annotation, through XML tags or colour (Figure 4); and
• Its internationalisation, with the addition of an English translation of its interface.

Besides these changes, we have also carried out an usability analysis of the system
and corrected almost all raised problems (cf. Tables 1 and 2). The only exception was the
issue related to the absence of a system icon to TSeg. On this regard, even though we have
actually created an icon and added it to the program interface, it could not be assigned
to the program in the Operating System, since it is distributed as a .jar file, which has
an icon of its own. Changing this icon would reflect in all other Java applications in the
system.

Finally, our usability analysis also highlighted some functional problems, such as bugs
in the colour representation of units for example, which were corrected. Additionally, and
as a way to sort out the usability problems we found, some new functionalities were added
to TSeg, such as:

• The automatic segmentation of all files in a directory (in the previous version this
was done on a documentwise basis);

• The inclusion of an “undo” choice for the user;
• The possibility of removing more than one unit in a single go (this was done unit

by unit in the previous version); and
• The parametrisation of colour choice, whereby the user can now choose a palette

to be used for segment representation.

3.2. MetaAnn

One possible solution to the problem of the high cognitive load demanded by general-
use annotation tools, along with the cost, in terms of time and resources, imposed by the
development and adaptation of ad hoc tools, is to make this development as automatised
as possible, through some meta-tool capable of automatically generating the source code
for simpler ad-hoc annotation tools. Within this framework, all a researcher needs to do
to apply a new annotation scheme to some corpus is to define its details at this meta-tool’s
interface, with no need for programming, as is the case with some applications (e.g. Day
et al. [2004], Lenzi et al. [2012]). The meta-tool would then be responsible for building



the annotation program that final annotators would use to apply the defined scheme to the
target corpus, thereby tailoring it to this scheme and corpus, and so reducing the cognitive
load imposed to them.

This reduction, in turn, makes the generated tool suitable for the use by non technically-
specialised annotators, i.e. people who might contribute to the annotation but that would
nevertheless struggle to deal with complicated annotation tools. Motivated by these fac-
tors, and designed for non-expert use, MetaAnn fill in these roles by (i) furnishing a
Graphical User Interface (GUI), as opposed to relying on XML or tab-separated configu-
ration files (e.g. Verhagen [2010], Petasis [2012]), through which researchers can define
categories and values to be applied to the target-corpus, with no need for actual program-
ming; and (ii) building an annotation tool, written in Java, with a “cleaner” GUI, so as to
not demand from its users (i.e. the final annotators) knowledge beyond what is necessary
for the application of the defined annotation scheme to the corpus.

3.2.1. Functionalities

MetaAnn builds from the assumption that the researcher already has a corpus of text
documents at hand, codified according to the pattern defined in Roman [2013], and al-
ready segmented in basic units of annotation (i.e. a corpus as output by TSeg). MetaAnn’s
main objective is then to generate an ad-hoc tool that allows final annotators to apply some
researcher-defined annotation scheme to this segmented corpus. Within it, these schemes
are coded as a series of values organised in categories. This organisation is then hard
coded at the GUI of the tool generated by MetaAnn, thereby resulting in an annotation
tool tailored to that specific scheme.

When running MetaAnn for the first time, researchers must load some examples of the
corpus to be annotated (Figure 5a), so as to allow it to obtain a list of all metadata defined
in the corpus. During this first step, MetaAnn also lets the researcher determine which of
these metadata are to be visualised in the generated tool’ GUI (Figure 5b). It is important
to notice that all metadata must be already present in the corpus (i.e. they must have been
added during the segmentation step with TSeg, for example). As such, one cannot create
new metadata, since this is an interface feature only. Researchers can nevertheless define
how they are to be shown at the tool’s interface, by renaming them (by clicking on Edit
information name in Figure 5b).

Once finished with this initial setting, the researcher can proceed to the definition of
the annotation scheme properly, by adding the categories that build up the scheme, as
shown in the bottom half of Figure 5a. Within this interface, one can also edit and remove
the already defined categories, besides visualising some of their details (such as existing
option values, for example). To add a category, researchers are presented a different in-
terface (Figure 6), where they must provide details regarding the added category, such as
its name (as it will appear at the generated tool’s interface), its identifier (to be used in the
source code in all elements related to this category, thereby allowing for its prompt iden-
tification, should any modification be necessary), and its type (either mutually exclusive
options, multiple selection list, or free text).

For the first two types, option values must be added (by clicking on Add in the in-



(a) Corpus characteristics. (b) Adding metadata to the GUI.

Figure 5. MetaAnn’s main interface.

Figure 6. MetaAnn: adding a category.



terface). The main difference between these two types is that while the later allows for
more than one value to be chosen, the former does not. For the third type (free text),
researchers can also define an optional default text to appear at the annotator’s interface
(Category Text, in the figure), providing some guidance to the annotator. These details
will define the graphical elements to be included at the generated tool’s interface, along
with their behaviour.

3.2.2. MetaAnn’s Generated Tool

Once the annotation scheme is codified into MetaAnn, researchers can have it generate
the ad-hoc tool that applies this scheme to the corpus at hand, by clicking on the Finish
button in Figure 5a. MetaAnn will then write up the source code for the annotation tool
(in Java), compile it and wrap it into a .jar file, which can then be used to run the tool
at the annotator’s computer6. It is important to notice that, at this point, researchers are
free to edit the source code and recompile it, should any modification be necessary. We
understand that, even though MetaAnn was designed so that editing the code is not strictly
necessary, there are situations that cannot be helped. The generated tool can then be finally
shipped, along with the corpus to be annotated, to final annotators.

Within the generated tool’s interface, and similar to Verhagen [2010] and Lenzi et al.
[2012], mutually exclusive options and regular lists are implemented with combo boxes,
whereas free texts are represented by plain text boxes. Figure 7 shows an example of each
possible category type. The tool’s interface is split in three sections: context, annotation
and browsing. The higher portion of the interface is dedicated to introducing the corpus
to the annotator – the context (cf. Andreas et al. [2012]). Within it, annotators can see
the plain document under analysis, along with the specific unit to be annotated and its
identifier. At the bottom of the interface, one finds some buttons to navigate through the
annotation units, along with buttons to save the annotation and exit the application.

Figure 7. MetaAnn: generated tool’s GUI.

Finally, the central part of the interface is reserved to the implementation of the an-
notation scheme itself (i.e. the part defined by the researcher when using MetaAnn).
Another important feature of MetaAnn, and which is also shown in Figure 7, is the pos-

6Through issuing the command java -jar jarfile or by clicking on it, depending on the user’s Operating
System.



sibility of defining conditional categories, i.e. categories that only make sense if the an-
notator chooses a specific value for another category in the annotation scheme. Such
categories initially show up as deactivated elements (CATEGORY2 in the figure), becom-
ing active (and so allowing annotators to interact with them) only upon the choice of a
specific value for some predetermined category (in this example, CATEGORY2 depends
on CATEGORY1).

As the annotation proceeds, MetaAnn’s generated tool will create (and update, if al-
ready present in the tool’s corpus directory) a series of XML files holding the classifi-
cation attributed to each annotation unit defined in the corpus (according to the format
described in Roman [2013]). A different file will be created for each annotated document
in the corpus, being stored in a folder named Annotations. Once finished the annotation,
annotators must return this folder to the researcher, so it can be input to AgreeCalc for
agreement analysis. At the end of this process, researchers will find themselves with a set
of annotation folders, one for each annotator, that they can use for inspection or whatever
else purpose.

3.2.3. Improvements to MetaAnn

Since its introduction to the community in 2013 [Missão and Roman 2013], MetaAnn
has undergone a set of functional and usability tests, with the objective of making cor-
rections, improvements and to make it accessible to a wider range of researchers, mainly
through its internationalisation (originally it was available in Portuguese only). As with
TSeg, of all highlighted usability problems (see Tables 1 and 2 for their overall amount),
along with functionality issues, both in MetaAnn and its generated tool, the only issue
that still remains to be solved is that of a proper system icon, given the already pointed
out behaviour by Operating Systems regarding this point. All remaining problems were
corrected.

Amongst the main improvements made, we highlight the following:

• The addition of “undo” and “cancel” functionalities, whereby users can step back
in case of mistakes or give the current course of action away;

• The possibility of choosing where corpora can be found in the filesystem (origi-
nally, the user was forced to place them in a specific folder);

• The addition of feedback messages to the user, and the change of current mes-
sages, making them more informative; and

• The solving of the “cyclic dependency” problem, whereby two categories could
originally be made dependent of each other.

As it turns out, even though MetaAnn did not present any heavy issue regarding its
functionalities, it was found to be really hard to use by the inexperienced user. We hope
these problems are settled now. As with TSeg, so was MetaAnn written as a Java stand-
alone application, running in all computing platforms and architectures supporting the
Java Virtual Machine (JVM) in its 7.0 version or higher, with the Java Runtime Environ-
ment (JRE) installed.



3.3. AgreeCalc
As a way to tackle the issue regarding the multiplicity of agreement indexes and con-

sequent difficulties in carrying out cross-studies comparisons, AgreeCalc was designed
so as to present researchers with a number of different options. Beyond simply allowing
for multiple indexes to be calculated, amongst a list of six implemented so far, AgreeCalc
also allows this calculation to be made with subsets of both data and annotators, thereby
giving researchers a point and click way to explore the data at hand.

Since its introduction to the community by Alvares and Roman [2013], AgreeCalc
has undergone a set of functional and usability tests, with the objective of correcting
existing issues and making it accessible to a wider range of researchers. Of all failed
scenarios pointed out in Tables 1 and 2, and following its fellow tools in the toolset, the
only point that remains unsolved was that of a proper system icon, for the reasons already
mentioned in the descriptions of TSeg and MetaAnn. Still, if users find this important, we
have developed such an icon, which is delivered with the system, so they can assign it to
AgreeCalc in their own systems, either by creating a wrapper script that calls AgreeCalc,
and then assigning this icon to the script, or by assigning it to all jar files in their system.

As for the modifications we made, main improvements were:

• The internationalisation of its interface, with its current version available both in
Portuguese and English (originally, AgreeCalc was available in Portuguese only);

• The addition of “undo” and “cancel” functionalities, whereby users can step back
in case of mistakes or give the current course of action away;

• The addition of two other agreement indexes, building a total of six in AGreeCalc’s
current version;

• The inclusion of feedback notes, progress bars, and confirmation dialogues (for
destructive, time consuming, or irreversible actions);

• The setting up or a user manual, something that was missing in its previous ver-
sion; and

• Some bug fixes, regarding the reports generated by the tool, data corruption, and
allowance of invalid input (such as empty sets of annotators and/or annotations,
badly-formatted corpora etc).

Written in Java, AgreeCalc runs in all computing platforms and architectures support-
ing the Java Virtual Machine (JVM) in its 7.0 version or higher, with the Java Runtime
Environment (JRE) installed.

3.3.1. Working with AgreeCalc

Taking as input a set of annotations by different annotators, codified as described
in [Roman 2013] and, therefore, in conformity with the annotations output by MetaAnn’s
ad-hoc annotation tool, AgreeCalc presents researchers with a graphical interface to eval-
uate annotation schemes (Figure 8), with no demands regarding a deep knowledge about
the details of the calculations involved in this process. To this end, the system relies on
some Java libraries7 to communicate with the R statistical package, which is then used to

7Namely, irr (http://cran.r-project.org/web/packages/irr/irr.pdf) and RCaller
(https://code.google.com/p/rcaller/)



calculate the agreement indexes. In doing so, AgreeCalc furnishes a graphical interface
to these R functions in which details regarding each coefficient are made transparent to
its user.

Figure 8. AgreeCalc’s main interface.

Upon loading a set of annotations into AgreeCalc, the user is presented with a brief
description of the selected corpus, as shown in Figure 8. This description contains some
of the metadata present in the annotation files, such as the annotation scheme’s name and
the name of the corpus upon which the annotation was applied, along with the corpus
location at the user’s file system. AgreeCalc also calculates some statistics, presenting
the user with the total amount of units and documents in the loaded corpus, as well as the
number of annotators it detected.

From the main interface, researchers can determine which annotators are to be consid-
ered for agreement measures (Figure 9). To do so, the list of available annotators, which
was automatically obtained from the metadata in the selected corpus, is shown at the right
side of the interface, whereas the left side is reserved to the annotators ruled out from the
calculation. Researchers are then free to explore the data, by selecting subsets of annota-
tors and verifying their agreement, so as to determine whether some individual annotator,
or even subgroups of annotators, diverge from the remaining ones.

Figure 9. Annotators subsetting.

At the next tab (Documents), shown in Figure 10a, the researcher can apply the same



selection to documents, by determining which documents are to be considered for agree-
ment and which will be excluded (the system defaults to calculating agreement for all
documents in the corpus). Along with the selection of annotators, document subsetting
gives the researcher a greater freedom to explore agreement across the data set, thereby
allowing for the identification of highly subjective documents (as indicated by subsets of
documents with very low inter-annotator agreement), or of annotators that apparently did
not understand the task at hand (should a small set of them astray from the rest).

(a) Document subsetting. (b) Agreement computation.

Figure 10. Calculating agreement.

It is important to notice, however, that a document refers to a complete text, instead
of some isolated annotation unit (i.e. the minimum unit upon which an annotation is ap-
plied). In its current version, AgreeCalc allows only for the selection of entire documents,
in which case agreement is calculated only for the selected documents (Figure 10a) and
annotators (filtered as shown in Figure 9). After selecting the documents and annotators
that will be considered for the computation of agreement, researchers can proceed to the
Agreement Coefficients tab (Figure 10b), where they are presented with a set of six dif-
ferent coefficients of agreement. As shown in the figure, depending on the number of
annotators selected for this computation, some coefficients may not be available, as is the
case with Cohen’s κ, which is to be used with two annotators only.

Another useful feature of AgreeCalc is the possibility of having it calculate pairwise
agreement according to any of the implemented coefficients (Figure 10b), in which case
the system will calculate the value for the selected indexes for all possible permutations
of annotators, taken two at a time. As a result, it will present, for each selected index,
the pair of annotators with the lowest and highest agreement, also furnishing the mean
agreement across all pairs. As for implemented coefficients, AgreeCalc’s current version
features Krippendorf’s α, Cohen’s κ, Fleiss’ κ, Percentage of Agreement, Robinson’s A
and Kendall’s W.

In AgreeCalc’s last tab (Figure 11), researchers can define the output format of the
document containing the calculated agreement results. Currently, available options are
HTML, XML and PDF. Besides generating the final agreement report, researchers can
also build two extra data sets, which are but annotation documents holding, for each
unit in the corpus, the most popular classification across annotators, i.e. the category
most frequently associated to each unit (its mode), regardless of the number of annotators



associating it to that unit; or the classification attributed by the majority of annotators (i.e.
above 50% of the annotators), in which case units where majority could not be reached
are left unclassified.

Figure 11. Gold standard generation.

These gold standards are codified as their source corpus, according to the pattern de-
scribed in Roman [2013]. In following this procedure, researchers are not only presented
with the numerical results of inter-annotator agreement, but also with a gold standard,
built according to one of these metrics (mode or majority), which can then be used for fu-
ture analyses, such as the identification of patterns and correlations, or even as a subsidy
for future research, such as the training of Machine Learning models, for example.

4. Related Work
One of the first decisions one must make when designing a general-purpose text an-

notation tool, i.e. a tool capable of applying different user-defined annotation schemes to
textual data, is whether it will be web-based or stand-alone. Web-based tools (e.g. Verha-
gen [2010], Lenzi et al. [2012], Andreas et al. [2012], Stenetorp et al. [2012], Bontcheva
et al. [2013], de Castilho et al. [2014], Pérez-Pérez et al. [2015], Janssen [2016], Lohr et al.
[2019]) have the straightforward advantage of allowing for a greater interaction amongst
annotators, and even between annotators and researchers. So if this is a requirement to
one’s project, the decision is clear. Also, they have the additional advantage of impos-
ing fewer requirements concerning memory usage, storage, and processing power on the
annotator’s side, being suitable for tools that should run in mobile phones for example.

On the other hand, they obviously require a full time live internet connection [Ver-
hagen 2010, Petasis 2012], which sometimes must not be taken for granted, specially if
annotators are doing their job while in movement (such as when travelling in trains, aero-
planes and the like), or if the population to be reached lives in more isolated areas. In an
experimental design where some subtasks must be performed as a unit, thereby not allow-
ing for interruptions during their execution, depending on such a connection will bring an
extra threat to the validity of the experiment, to the extent that it increases the odds of
annotators dropping out for technical reasons (cf. Roman et al. [2006]). But even when
internet connection can be assumed, there are some issues regarding browser compati-
bility [Verhagen 2010, Petasis 2012], along with the setting up of a server with enough
processing power, memory and storage space to handle requests by the annotators, let



alone the need for some maintenance service to keep it up and running (cf. Bontcheva
et al. [2013]). These requirements translate into costs at the researcher’s side.

Stand-alone tools (e.g. Mueller and Strube [2001], Day et al. [2004], Müller and
Strube [2006], Ogren [2006]), on the other hand, do not suffer from these problems.
Nevertheless, they have disadvantages of their own, such as the absence of network com-
munication and cooperation amongst annotators and between annotators and researchers.
If these are requirements for the annotation effort, such tools should not be considered.
Although reducing the costs related to servers and services on the researcher’s side, these
are actually transferred to the user’s side, that is the annotator. These costs, translated into
processing and memory requirements, are nevertheless distributed amongst annotators,
which might result in a burden they can afford. In this research, we opted for delivering a
stand alone tool, so as to maximise the odds annotators would work independently of one
another, besides reducing the drop-out risk when carrying out continuous subtasks that
should not be interrupted.

Given the advantages and disadvantages of each approach, some tools (e.g. Petasis
[2012]) try to get the best out of both worlds (with some researchers explicitly stating their
intent to follow this same path, such as Lenzi et al. [2012]), by presenting themselves as
stand-alone applications with network capabilities for storing data in centralised servers,
along with instant messaging facilities for communicating events to all annotators. This
is an interesting feature we do not possess, and which we believe might be added to fu-
ture versions of our system. Nevertheless, we still believe this is a feature that must hold
only between the researcher and the annotator, thereby not allowing for inter-annotator
communication. Such a communication would certainly break the requirement of inde-
pendence between annotators, making it hard to estimate the chance-related agreement –
a necessary feature to the majority of existing agreement indices.

Whatever the tool, there seems to exist some common sense interpretation whereby
being general-use implies being “all-in-one”, that is it implies delivering everything both
researcher and annotator might need for setting up the experiment, carrying it out, and
analysing its results. This is a common feature to virtually all system cited above, even
though many separate the roles through session passwords and the like (e.g. Verhagen
[2010], Bontcheva et al. [2013], de Castilho et al. [2014], Janssen [2016]). Exceptions
to this unstated rule are SYNC3 [Petasis 2012], which is based on the Ellogon plat-
form [Petasis et al. 2002], thereby outsourcing project administration to this platform,
and some stand-alone tools (e.g. Day et al. [2004]), which are pre-packed and then sent
to final annotators. These, however, depend either on manually pre-built configuration
files or additional programming to generate the ad-hoc tools to be sent to final annotators.
Within our toolset, this task is made more user-friendly, through MetaAnn.

In fact, our toolkit seems to fit an apparently contradictory class: that of general-
use-ad-hoc tools. It is general-use because researchers can use it for many different text
annotation tasks and schemes, and it is ad-hoc because the final tool, which will be used
by annotators, is tailored to the specific task at hand. In a sense, the toolkit might also be
classified as a collaborative toolset, that is a set of simpler tools that integrate and work
together for a common annotation purpose. In doing so, the toolset presents the advan-
tages, at the annotator side, of delivering an annotation tool focused at the annotation task
proper, with no other external interference (as provided by interfaces allowing for differ-



ent roles in the annotation process), and clearly separating all steps (and associated roles)
in the annotation process. At the downside, the existence of different tools might bring
an extra burden at the researcher’s side, who has to deal with these tools as opposed to a
single system with all information at the reach of their hands. Still, we believe this is a
price worth paying.

Regarding the analysis of annotation quality, most of the above cited systems present
some way to calculate inter-annotator agreement (e.g. Ogren [2006], Verhagen [2010],
Andreas et al. [2012], Petasis [2012], Lenzi et al. [2012], Bontcheva et al. [2013], de Castilho
et al. [2014], Pérez-Pérez et al. [2015], Lohr et al. [2019]). The problem, however, is that
they hardly agree on which indexes should be presented, with Cohen’s κ (e.g. Petasis
[2012], Lenzi et al. [2012], Andreas et al. [2012], Bontcheva et al. [2013]) and f-measure
(e.g. Pérez-Pérez et al. [2015], Bontcheva et al. [2013], de Castilho et al. [2014]) figuring
as the preferred ones. Krippendorff’s α (e.g. Lohr et al. [2019]), Fleiss’ κ (e.g. Lenzi et al.
[2012]), Dice’s coefficient (e.g. Lenzi et al. [2012]) and percent agreement (e.g. Petasis
[2012]) are sometimes also calculated.

Still, none of the analysed tools seems to deliver more than three different indexes,
with presenting a single alternative to the user being the apparent rule (e.g. Andreas et al.
[2012], de Castilho et al. [2014], Pérez-Pérez et al. [2015], Lohr et al. [2019]). As already
argued, this reduces the degree to which different studies can be compared regarding
inter-annotator agreement, for different indexes have different assumptions and, as such,
do not necessarily behave the same way in face of the same dataset (see Artstein and
Poesio [2008] for a detailed analysis of these indexes). Within our toolset, this prob-
lem is overcome by presenting researchers with a broader range of choices to calculate
inter-annotator agreement (to wit, Krippendorf’s α, Cohen’s κ, Fleiss’ κ, Percentage of
Agreement, Robinson’s A and Kendall’s W), thereby increasing the odds that research
data analysed with our tool can be compared to others.

Finally, although usually considered an important feature to be taken into account
when choosing an annotation tool (cf. Dipper et al. [2004]), usability analysis does not
seem to be of much concern by current research. In fact, even among the systems that
claim it to be one of their upside features (e.g. Geertzen and Bunt [2006], Bertran et al.
[2008], Lenzi et al. [2012]), we could find no detailed account of how it was measured
(i.e. which approach was taken to analyse usability), and what it ultimately measured (i.e.
what features were considered when analysing the tool at hand). In contrast, here we give
details of the procedure we followed when analysing our toolset’s usability, such as the
adopted approach and the analysed variables, thereby allowing for a better comprehen-
sion, by the reader, of the toolset’s strengths and weaknesses.

5. Discussion

As discussed in the previous section, our toolset stands out from current research in
that it splits the main annotation steps (i.e. text segmentation, annotation and assessment)
into a pipeline of different tools. In doing so, we not only allow for each of these steps to
be tried and assessed independently of the others, but also make it easier for researchers to
apply only a subset of these tools to their own research, provided that input data is tagged
following the same pattern accepted by the toolset. This could be an interesting feature
for existing tools that take previously segmented data as input (e.g. Lohr et al. [2019]),



or researchers that intend to compare their results to others through different agreement
metrics (e.g. de Arruda et al. [2015]). Even though both cases require a mapping between
our toolset data representation format and that accepted by the tools used in the research,
this mapping will most certainly require much less effort than building tools specifically
to this end.

In building annotation tools that can be independently distributed to annotators, we
allow the toolset to be used not only in annotation efforts, but also in annotation experi-
ments where independence between subjects is a requirement. Moreover, the separation
between annotation and segmentation, as opposed to performing both tasks in a single
annotation step, allows for different annotation schemes to be applied to the same seg-
mentation. This is a useful feature if one has already settled on a segmentation (or is
bound to an existing one) and wishes to test different schemes (perhaps unifying cate-
gories or splitting existing categories into subcategories, for example) in the search for
a better inter-annotator agreement. This is an issue that has already been raised in the
related literature (e.g. Craggs and Wood [2004], Roman and Carvalho [2010]).

Another small but sometimes held important feature of our system is the fact that it
can automatically segment text according to different granularities (to wit words, sen-
tences and paragraphs), treating them as basic units of annotation. These are then dealt
with indiscriminately by the annotation tool, thereby not introducing any extra effort if
one is to deal with long text stretches, as pointed out by Lohr et al. [2019]. Also, the
possibility of defining conditional categories makes the system suitable for research that
has hierarchically structured labels as a major requirement (e.g. Lohr et al. [2019]). In this
case, however, instead of showing some drop-down menu with labels and sub-labels (as
done in Lohr et al. [2019]), whereby the user must follow through the hierarchy down to
the desired label, we require a choice to be made at each level of the hierarchy. Although
this may represent extra work to the annotator it also allows the researcher to identify
where in the hierarchy disagreement occurred.

At the downside, and as pointed out by Grover et al. [2006], the fact that annotation
is separated from segmentation makes it harder to recover from segmentation mistakes
during annotation. This, however, was a design choice we made, for we believe it to be
a small price given the benefits of not introducing any confounding variables. To reduce
the risk of this kind of problem, it is advised to researchers to test segmentation schemes
by having a small set of annotators annotate the data, and then analysing the source of
disagreement, so as to determine whether it comes from segmentation or annotation itself.
Still, we understand that there are situations that cannot be helped, to which our tool might
not be the best choice. Finally, the lack of a proper communication between researchers
and annotators makes it harder to make interventions to the annotation experiment, or even
to raise a consensus discussion between researchers and annotators. These are features
left for future improvements.

6. Conclusion

In this article, we described a toolset designed for general-purpose text annotation
tasks. The toolset comprises a pipeline of three independent but interconnected tools,
covering all steps throughout the annotation process, from data segmentation to data an-
notation to annotation evaluation. These tools were primarily built to address three main



issues found in current general-purpose annotation tools, to wit (i) the potential confound-
ing of variables, as a result of having annotators do both segmentation and annotation
in a single step, and so making it hard to determine which variable might be responsi-
ble for disagreement amongst annotators; (ii) the cognitive load imposed to annotators,
by presenting them a tool with different roles and tasks altogether in a single interface
(sometimes even allowing them access to information beyond the task at hand), poten-
tially limiting the use of the tool to annotators who are more familiar with such systems;
and (iii) the difficulty in comparing one study to others, when different agreement indexes
are reported.

Within our toolset, these issues are approached by (i) having different tools perform
data segmentation and annotation separately; (ii) giving researchers a tool where they can
define and generate ad hoc tools, tailored to specific annotation schemes, to be distributed
amongst annotators; and (iii) furnishing a way to calculate inter-annotator agreement ac-
cording to six different indexes. Given its modularity, the toolset can be used both as
a pipeline, whereby the output of one tool can be input to the next one, or for specific
subtasks, such as segmenting texts into basic units of annotation (either manually or auto-
matically), automatically generating annotation tools to specific schemes, or calculating
agreement, according to different indexes, for subsets of annotations and annotators. The
toolset lends itself then, among other things, to the quick prototyping and testing of an-
notation schemes, with no extra effort needed to the development of different tools to this
end, also allowing for the study of the behaviour of different agreement indexes in the
data set.

Although beta versions of each tool have already been introduced to the community
in their Portuguese versions, the final integration of these tools has never been showed.
More importantly, all tools in the set have undergone some major upgrades, being also
evaluated according to their usability. This is something we found considerably rare in
the current literature, raising some concerns, specially in face of the high rate of sce-
nario failures showed by our toolset, as reported in Section 3. Main modifications to
the toolset comprise the addition of new inter-annotator agreement indexes, the modi-
fication of their Graphical User Interfaces and corpus codification scheme, their inter-
nationalization through UTF-8 and their presentation both in English and Portuguese,
whereby the user may choose the language adopted at the interface. Finally, all tools are
currently distributed under GPL, being available for download at https://github.
com/NortonTR/ResDialTools.

As for the toolset’s limitations, one has to bear in mind that it was primarily designed
for annotation experiments and, as such, it is not suited for annotation efforts where an-
notators must communicate, so as to settle on some annotation. The fact we have split
segmentation and annotation apart makes the tool not suitable to tasks where these need
to be made in a single step, such as in some prosody annotation tasks for example. An-
other drawback lies in the way annotators send their final results back to researchers. In
its current version, the toolset does not allow for the automatic delivering of these results
over the internet, so annotators must be instructed to find the annotated files and send
them through e-mail, for example. Even though our original intention was not to force re-
searchers into a specific set of steps that might add some prohibitive costs (such as setting
up a centralised server to receive all annotations), we understand an upload facility could



be offered as an option to them, and leave it to future improvement.

Along similar lines, and as suggested by Lohr et al. [2019], it might be desirable to
have some kind of automated monitoring mechanism, so researchers could check both on
the overall stage of the annotation and annotator-specific progress. Such a mechanism
might, for instance, record some meta information about the annotator’s environment and
behaviour, such as time spent on each annotation, operating system, devices etc. Follow-
ing Bontcheva et al. [2013], another place for improvement might be to measure agree-
ment between each annotator and the gold standard produced by the system, so as to have
some way to determine how individual annotations are spread around this standard. Even
though there are currently workarounds to achieve this, it might be interesting having this
information at the produced report. Last, but not least, the toolset must provide a way
to measure agreement at the segmentation phase (perhaps through Dice’s coefficient, for
example, as reported in Lenzi et al. [2012]). This is definitely an improvement to be made.

Acknowledgements
The authors would like to thank early adopters of this toolset, who have provided us

with valuable feedback and suggestions for new features.

References
Alm, C. O., Roth, D., and Sproat, R. (2005). Emotions from text: Machine learning

for text-based emotion prediction. In Proceedings of HLT/EMNLP 2005, Vancouver,
Canada.

Alvares, A. R. and Roman, N. T. (2013). Agreecalc: Uma ferramenta para análise da con-
cordância entre múltiplos anotadores. In Proceedings of the 9th Brazilian Symposium
in Information and Human Language Technology (STIL 2013), pages 1–10, Fortaleza,
CE – Brazil.

Andreas, J., Rosenthal, S., and McKeown, K. (2012). Annotating agreement and disagree-
ment in threaded discussion. In Proceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC 2012), pages 818–822, Istanbul, Turkey.

Apostolova, E., Neilan, S., An, G., Tomuro, N., and Lytinen, S. (2010). Djangology: A
light-weight web-based tool for distributed collaborative text annotation. In Proceed-
ings of the Seventh International Conference on Language Resources and Evaluation
(LREC’10), Valletta, Malta. European Language Resources Association (ELRA).

Artstein, R. and Poesio, M. (2008). Inter-coder agreement for computational linguistics.
Computational Linguistics, 34(4):555–596.

Atkinson, J. and Munoz, R. (2013). Rhetorics-based multi-document summarization.
Expert Systems with Applications, 40:4346–4352.

Bayerl, P. S. and Paul, K. I. (2011). What determines inter-coder agreement in manual
annotations? a meta-analytic investigation. Computational Linguistics, 37(4):699–725.

Bertran, M., Borrega, O., Recasens, M., and Soriano, B. (2008). Ancorapipe: A tool for
multilevel annotation. Procesamiento del Lenguaje Natural, 41:291–292.

Bontcheva, K., Cunningham, H., Roberts, I., Roberts, A., Tablan, V., Aswani, N., and
Gorrell, G. (2013). Gate teamware: a web-based, collaborative text annotation frame-
work. Language Resources and Evaluation, 47(4):1007–1029.

Callaway, C., Dzikovska, M. O., Moore, J. D., Reitter, D., and Zinn, C. (2005). D11:
Corpus collection and specification. Technical report, The LeActiveMath Consortium.



Carletta, J. (1996). Assessing agreement on classification tasks: The kappa statistic.
Computational Linguistics, 22(2):249–254.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Education and Psycho-
logical Measurement, 20(1):37–46.

Craggs, R. and Wood, M. M. (2004). A two dimensional annotation scheme for emotion in
dialogue. In AAAI Spring Symposium: Exploring Attitude and Affect in Text: Theories
and Applications, Stanford, USA. Technical Report SS-04-07.

Craggs, R. and Wood, M. M. (2005). Evaluating discourse and dialogue coding schemes.
Computational Linguistics, 31(3):289–296.

Day, D., McHenry, C., Kozierok, R., and Riek, L. (2004). Callisto: A configurable anno-
tation workbench. In Proceedings of the Fourth International Conference on Language
Resources and Evaluation. (LREC 2004), pages 2073–2076, Lisboa, Portugal.

de Arruda, G. D., Roman, N. T., and Monteiro, A. M. (2015). An annotated corpus for
sentiment analysis in political news. In Proceedings of the 10th Brazilian Symposium
in Information and Human Language Technology (STIL 2015), pages 101–110, Natal,
RN – Brazil.

de Castilho, R. E., Biemann, C., Gurevych, I., and Yimam, S. M. (2014). Webanno: a
flexible, web-based annotation tool for clarin. In Proceedings of the 3rd CLARIN ERIC
Annual Conference (CAC2014), Soesterberg, The Netherlands.

de Loupy, C., Guégan, M., Ayache, C., Seng, S., and Moreno, J.-M. T. (2010). A french
human reference corpus for multi-document summarization and sentence compression.
In Proceedings of the Seventh International Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta.

Dipper, S., Götze, M., and Stede, M. (2004). Simple annotation tools for complex anno-
tation tasks: an evaluation. In Proceedings of the LREC Post-Conference Workshop on
XML-Based Richly Annotated Corpora, Lisbon, Portugal.

Dumas, J. S. and Redish, J. C. (1999). A Practical Guide to Usability Testing. Intellect.
Eugenio, B. D. and Glass, M. (2004). The kappa statistic: A second look. Computational

linguistics, 30(1):95–101.
Fort, K., François, C., Galibert, O., and Ghribi, M. (2012). Analyzing the impact of

prevalence on the evaluation of a manual annotation campaign. In Proceedings of
the Eighth International Conference on Language Resources and Evaluation (LREC-
2012), pages 224–230, Istanbul, Turkey. European Language Resources Association
(ELRA). ACL Anthology Identifier: L12-1233.

Geertzen, J. and Bunt, H. (2006). Measuring annotator agreement in a complex hierar-
chical dialogue act annotation scheme. In Proceedings of the 7th SIGdial Workshop on
Discourse and Dialogue, pages 126–133, Sydney, Australia. Association for Computa-
tional Linguistics.

Grouin, C., Rosset, S., Zweigenbaum, P., Fort, K., Galibert, O., and Quintard, L. (2011).
Proposal for an extension of traditional named entities: From guidelines to evaluation,
an overview. In Proceedings of the Fifth Linguistic Annotation Workshop (LAW V),
pages 92––100, Portland, Oregon, USA.

Grover, C., Matthews, M., and Tobin, R. (2006). Tools to address the interdependence
between tokenisation and standoff annotation. In Proceedings of the 5th Workshop
on NLP and XML (NLPXML-2006): Multi-Dimensional Markup in Natural Language
Processing, Trento, Italy.

Gut, U. and Bayerl, P. S. (2004). Measuring the reliability of manual annotations of
speech corpora. In Proceedings of Speech Prosody 2004, pages 565–568, Nara, Japan.



Hasler, L. (2007). From extracts to abstracts: Human summary production operations
for computer-aided summarisation. In Proceedings of the RANLP 2007 Workshop on
Computer-Aided Language Processing (CALP), pages 11–18, Borovets, Bulgaria.

Janssen, M. (2016). Teitok: Text-faithful annotated corpora. In Proceedings of the
Tenth International Conference on Language Resources and Evaluation (LREC’16),
Portorož, Slovenia.

Jeffries, R., Miller, J. R., Wharton, C., and Uyeda, K. M. (1991). User interface evaluation
in the real world: A comparison of four techniques. In Proceedings of the ACM CHI
91 Human Factors in Computing Systems Conference, pages 119–124, New Orleans,
USA.

Jordan, P. W. (1998). An Introduction To Usability. Taylor and Francis.
Krippendorff, K. (2004). Content Analysis: An Introduction to its Methodology. SAGE,

2nd edition .
Lenzi, V. B., Moretti, G., and Sprugnoli, R. (2012). Cat: the celct annotation tool. In Pro-

ceedings of the eighth international conference on Language Resources and Evaluation
(LREC 2012), Istanbul, Turkey.

Lewis, C. and Wharton, C. (1997). Hndbook of Human-Computer Interaction, chapter
Cognitive Walkthroughs, pages 717–732. Elsevier.

Lohr, C., Kiesel, J., Luther, S., Hellrich, J., Stein, B., and Hahn, U. (2019). Continuous
annotation quality control, support for hierarchically structured label sets and long-
segment annotation with w at -s l 2.0. In Proceedings of the 13th Linguistic Annotation
Workshop, pages 215–219, Florence, Italy.

Mathet, Y., Widlöcher, A., Fort, K., François, C., Galibert, O., Grouin, C., Kahn, J.,
Rosset, S., Zweigenbaum, P., and Zweigenbaum, P. (2012). Manual corpus annotation:
Giving meaning to the evaluation metrics. In Proceedings of the 24th International
Conference on Computational Linguistics (COLING 2012): Posters, pages 809–818,
Mumbai, India. The COLING 2012 Organizing Committee.

Missão, T. E. I. and Roman, N. T. (2013). Metaann: Um gerador de ferramentas para
anotação de textos. In Proceedings of the 9th Brazilian Symposium in Information and
Human Language Technology (STIL 2013), pages 11–20, Fortaleza, CE – Brazil.

Mitkov, R., Orasan, C., and Evans, R. (1999). The importance of annotated corpora for
nlp: the cases of anaphora resolution and clause splitting. In Proceeding of ”Corpora
and NLP: Reflecting on Methodology Workshop”, TALN’99, pages 60 – 69, Cargese,
Corse.

Mueller, C. and Strube, M. (2001). Mmax: A tool for the annotation of multi-modal
corpora. In Proceedings of the 2nd IJCAI Workshop on Knowledge and Reasoning in
Practical Dialogue Systems, Seattle, USA.

Müller, C. and Strube, M. (2006). Multi-level annotation of linguistic data with MMAX2.
In Braun, S., Kohn, K., and Mukherjee, J., editors , Corpus Technology and Language
Pedagogy: New Resources, New Tools, New Methods, pages 197–214. Peter Lang,
Frankfurt a.M., Germany.

Müller, C. and Strube, M. (2003). Multi-level annotation in mmax. In Proceedings of
the Fourth SIGdial Workshop of Discourse and Dialogue (SIGDIAL), pages 198–207,
Sapporo, Japan.

Nielsen, J. (1993). Usability Engineering. Academic Press.
Nielsen, J. (1994). Usability Inspection Methods, chapter Heuristic evaluation. John

Wiley & Sons.



O’Donnell, M. (2008). The UAM corpustool: software for corpus annotation and explo-
ration. In Proceedings of the XXVI Congreso de AESLA, Almeria, Spain.

Ogren, P. V. (2006). Knowtator: A protégé plug-in for annotated corpus construction. In
Proceedings of the Human Language Technology Conference of the NAACL, Compan-
ion Volume: Demonstrations, pages 273–275, New York City, USA.

Orăsan, C. (2003). Palinka: A highly customisable tool for discourse annotation. In Pro-
ceedings of the Fourth SIGdial Workshop of Discourse and Dialogue (SIGdial2003),
page 39–43, Sapporo, Japan.

Petasis, G. (2012). The sync3 collaborative annotation tool. In Proceedings of the Eighth
International Conference on Language Resources and Evaluation (LREC-2012), pages
363–370, Istanbul, Turkey. European Language Resources Association (ELRA). ISBN
978-2-9517408-7-7.

Petasis, G., Karkaletsis, V., Paliouras, G., Androutsopoulos, I., and Spyropoulos, C. D.
(2002). Ellogon: A new text engineering platform. In Proceedings of the 3rd Interna-
tional Conference on Language Resources and Evaluation (LREC 2002), pages 72–78,
Las Palmas, Canary Islands, Spain.

Przepiórkowski, A. and Bański, P. (2009). Which xml standards for multilevel corpus
annotation? In Proceedings of the 4th Language and Technology Conference, LTC
2009, Poznan, pages 400–411, Poznan, Poland.

Pustejovsky, J. and Stubbs, A. (2012). Natural Language Annotation for Machine Learn-
ing. O’Reilly Media, 1 edition . ISBN: 978-1-4493-0666-3.

Pérez-Pérez, M., Glez-Peña, D., Fdez-Riverola, F., and Lourenço, A. (2015). Marky: A
tool supporting annotation consistency in multi-user and iterative document annotation
projects. Computer Methods and Programs in Biomedicine, 118:242–251.

Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Çelebi, A., Dimitrov, S., Drabek,
E., Hakim, A., Lam, W., Liu, D., Otterbacher, J., Qi, H., Saggion, H., Teufel, S.,
Topper, M., Winkel, A., and Zhang, Z. (2004). Mead — a platform for multidocument
multilingual text summarization. In Proceedings of the 4th International conference on
Language Resources and Evaluation (LREC 2004), Lisbon, Portugal.

Reidsma, D., Jovanovic, N., and Hofs, D. H. W. (2005). Designing annotation tools based
on properties of annotation problems. In Proceedings of the 5th International Confer-
ence on Methods and Techniques in Behavioral Research, Wageningen, The Nether-
lands.

Rodrigues, F., Semolini, R., Roman, N. T., and Monteiro, A. M. (2012). Tseg – a text
segmenter for corpus annotation. In Proceedings of the VIII Brazilian Symposium on
Information Systems (SBSI 2012), volume 1, pages 700–709, São Paulo, SP – Brasil.
ISSN: 2177-885X.

Roman, N. T. (2013). Resdial – coding description (v.1.0). Technical Report PPgSI-
003/2013, EACH-USP, São Paulo, SP – Brazil.

Roman, N. T. and Carvalho, A. M. B. R. (2010). A multi-dimensional annotation scheme
for behaviour in dialogues. In Kuri-Morales, A. and Simari, G. R., editors , Proceedings
of the 12th Ibero-American Conference on Artificial Intelligence (IBERAMIA 2010),
volume 6433 of Lecture Notes in Computer Science, pages 386–395, Bahı́a Blanca,
Argentina. Springer Berlin Heidelberg. Print ISBN: 978-3-642-16951-9 Online ISBN:
978-3-642-16952-6.

Roman, N. T., Piwek, P., and Carvalho, A. M. B. R. (2006). A web-experiment on di-
alogue classification. In Rezende, S. O. and da Silva Filho, A. C. R., editors , Pro-



ceedings of the Fourth Workshop in Information and Human Language Technology
(TIL’2006), Ribeirão Preto, SP – Brazil. ICMC-USP.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and Tsujii, J. (2012). Brat: a
web-based tool for nlp-assisted text annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of the Association for Computational
Linguistics, pages 102–107, Avignon, France.

Verhagen, M. (2010). The brandeis annotation tool. In Proceedings of the Seventh Inter-
national Conference on Language Resources and Evaluation (LREC’10), pages 3638–
3643, Valletta, Malta.


